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Abstract

The climate is changing rapidly. Globally, trillions of dollars of housing wealth is at risk of flood

damage, putting billions of people in harm’s way. In many countries, federally administered flood

insurance programs are the primary tool that policy-makers employ to influence coastal development

and mitigate flood damages. I study the design of federal flood insurance programs in the United

States, using data on the universe of tax parcels in Florida and North Carolina. For identification, I

leverage a 2021 reform to the rate calculation methodology of the National Flood Insurance Program

(NFIP), which more tightly linked prices to actual underlying flood risk. I find that increasing

flood insurance premiums causes declines in new development. My findings suggest the existence of

substantial moral hazard prior to the reform, and emphasize the importance of accurately pricing

risk for avoiding the worst economic—and human—costs of climate change.
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1 Introduction

Over the past two decades, developers have built structures on nearly 2.1 million acres of flood-prone

land. This includes 844,000 residential properties (Agopian et al., 2024). Concurrently, there has been a

dramatic rise in the number of billion-dollar natural disaster events. Estimates of US flood damages in

a typical year now average $32.1 billion (Wing et al., 2022). Flood risk is projected to increase due to

climate change, causing more frequent and more intense storms. Continued development in flood-prone

areas will place more housing in harm’s way.

The National Flood Insurance Program (NFIP) offers a solution to the increasing threat of flooding

in the United States. Founded in 1968 with the goals of reducing future flood damage and protecting

property owners with affordable insurance, the NFIP has a responsibility to accurately price flood risk

to discourage development in especially risky areas. As the dominant (public) firm in the flood insurance

market, NFIP boasts approximately 5 million policy holders nationwide, providing nearly $1.3 trillion

in coverage amounts (National Flood Insurance Program, 2024). However, for much of its existence, the

NFIP has been criticized for offering excessive subsidies, out-dated flood risk estimates, and a coarse risk-

price menu. For these reasons, critics have suggested that the NFIP’s operations contribute to increased

development in high-risk, flood-prone areas.

I study a significant reform in the NFIP’s price-setting methodology. This allows me to investigate the

effect of flood risk price changes on local development decisions. Importantly, the reform only changed

prices and did not alter access to flood insurance or regulatory boundaries.1 These price changes led to

premiums that reflect a more actuarially fair price and distribution of flood risk. The new reform, titled

Risk Rating 2.0 (RR2), went into effect in October 2021 for all new underwriting business.2 The previous

pricing system, which I will call Risk Rating 1.0 (RR1) for convenience, utilized Flood Insurance Rate

Maps (FIRMs) to provide flood risk information and set premiums. These maps are provided at the

NFIP community level and delineate boundaries of the 100-year floodplain, also known as the Special

Flood Hazard Area (SFHA), where the annual probability of a flood event exceeds 1%.3 Outside of the

SFHA lies the 500-year floodplain, where the annual probability of flooding is between 0.2% and 1%, and

all other areas are classified as minimal risk. Under current law, homeowners are required to purchase a

flood insurance policy if their property lies in an SFHA and they have a federally-backed mortgage.

RR2 introduced significant amounts of variation in premium values both within and across flood zones.

The updated methodologies added many new property-specific characteristics, including new elevation

and hydrological measures related to flood risk. Under RR1, variation in premiums was mainly driven by

flood zone status (in an SFHA or not), housing characteristics (basement type, number of floors, building

type), policy attributes (coverage amounts and deductibles), and, for policyholders inside an SFHA,

elevation. Conditional on these characteristics, there was no variation in premiums across geography

and very little variation within flood zone. For example, the owners of a single-family home with no

basement and $200,000 of coverage would pay the exact same premium in Rhode Island and Florida,

despite flood risk being much higher in Florida. Furthermore, within a flood zone, the owners of that

same single-family home would pay the same premium regardless if it was 10 feet from the coastline or
1Prior work has considered reforms or settings that jointly change the price of flood risk, insurance access, and regulatory

boundaries. See Ostriker and Russo (2024); Weill (2023); Mulder (2024) for representative examples.
2I focus on the short-run period surrounding the introduction of the reform, restricting my sample period to 2016-2023.
3NFIP communities can be either a town, city or county, but must have authority to adopt and enforce floodplain

ordinances for the area under its jurisdiction.
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100 feet from the coastline.

I exploit this newly introduced variation in premiums to study the effect on local development de-

cisions within Florida and North Carolina. These two states are useful laboratories for my research

question because they both exhibit significant flood risks from hurricanes and tropical storms, but with

greatly different exposure intensities. Florida has the most policies-in-force in the NFIP with 1.7 mil-

lion policies (17.4% of state-wide housing units), while North Carolina has approximately 130,000 (2.8%

of state-wide housing units) policies.4 Furthermore, of the residential floodplain development that has

occurred over the last two decades, Florida accounted for nearly half, building 398,000 new residential

units from 2001 to 2019, which accounts for 21% of total new housing built in Florida over that period.

Conversely, while North Carolina has some of the most developable land in its floodplain compared to

other states (nearly 16%), it only has 3.7% of its new housing built in the floodplain (Agopian et al.,

2024). Thus, these two states should provide a sufficiently representative setting to study the effect of

RR2 and test its external validity.

To study the effect of RR2, I construct a novel dataset with granular geo-spatial data. Using the

universe of tax parcels in both Florida and North Carolina, administrative data from the NFIP, and

hydrological and topographical data from the United States Geological Survey (USGS), I construct hy-

pothetical premiums faced by each tax parcel under RR1 and RR2, based on available flood insurance

and technical manuals. Doing so gives me a continuous measure of premium changes for every parcel in

both states. Due to the sparse nature of new development, I aggregate my data from the parcel level

to the block group-floodplain level. To causally identify an effect of premium changes on housing devel-

opment, I use a conditional difference-in-differences (DID) design with a two-way fixed effect (TWFE)

specification. Identification relies on the assumption that treated observations within the conditional

fixed effect groupings would follow a parallel trend to control observations in the absence of the imple-

mentation of RR2. I validate this assumption with visual tests in the form of event studies. I confirm

the visual impression with a formal statistical test. Additionally, I use newer methods from Callaway et

al. (2024a) that allow me to exploit a continuous treatment in a DID framework.

This strategy allows me to address two important questions related to the price reform. First, did RR2

change new development on average? Second, which premium change levels have larger causal effects?

Question 1 can provide necessary evidence on moral hazard as a result of the NFIP’s outdated policies

and subsidized rates. Significant decreases in development in response to the reform would suggest the

prior pricing scheme encouraged riskier location choices. Question 2 can provide crucial information

related to climate adaptation policy. If premium increases are too small, or negative for a given level

of true risk, development may respond positively to effects of the reform, negating the overall risk

reductions. Conversely, if premium increases are too large, development might be too constricted, which

could produce unnecessary economic losses. Thus, the causal estimates of development’s responsiveness

to premium change levels would be needed to improve the pricing menu, one of the NFIP’s key policy

levers for reducing future flood risk.

To start my analysis, I begin with a binary version of my continuous premium change measure

that defines treated observations as units that experienced an "economically meaningful" change in their

potential flood insurance premium. This setup ignores any potential treatment intensity or heterogeneity,
4Based on measures from the 2020 decennial census and rolling policies-in-force (PIF) from the NFIP as of August 2024.

Florida has 1,718,625 PIF and 9,865,350 housing units, while North Carolina has 129,878 PIF and 4,708,710 housing units.
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and includes both positive and negative premium changes. I find that the introduction of RR2 led to

a 27% decrease in the share of new development in a block group-floodplain in North Carolina and a

10% decrease in Florida, relative to the control mean. These large and economically significant estimates

suggest the NFIP’s prior policy may have been encouraging moral hazard.

To examine treatment effects among the various levels of the premium change, I increasingly discretize

my treatment until I reach the continuous premium change measure. Using separate treatment indicators

for increases and decreases, I find that increased premiums in North Carolina led to a 36% decrease in

the share of new development, while in Florida, increased premiums led to a 14% decrease. Decreased

premiums in North Carolina had no effect on development. Conversely, decreased premiums in Florida

led to a 13% increase in development, an effect of nearly the same magnitude as the premium increases,

which highlights the need for more flexible heterogeneity analysis using a continuous measure.

Using estimates from the continuous measure of premium changes, I calculate price elasticities of

development with respect to flood insurance premiums. To the best of my knowledge, these estimates

are novel in the literature. The continuous measures of the TWFE specification imply negative effects

of the reform on development overall. Using these estimates, I can compute an approximate elasticity

of development with respect to premium changes for each state. For North Carolina, the elasticity is

-0.32, and for Florida, it is -0.11. While relatively inelastic, these are still economically meaningful, as a

10% increase in the price of flood insurance leads to a 3.2% decrease and 1.1% decrease in development,

on average, in North Carolina and Florida, respectively. Using new estimators proposed in Callaway

et al. (2024a), I produce estimates for the average treatment effect on the treated (ATT) for the entire

distribution of premium changes. I find that estimates are negative for positive premium change levels,

and zero or slightly positive for negative changes, implying that only significant increases in premiums

will have an effect on development decisions. The asymmetric response across the premium distribution

has significant implications for policy prescriptions and the broader understanding of this market.

I find important differences in my results between North Carolina and Florida that suggest distinct

responses to the information signal of the price reform. To analyze the mechanisms underlying my results,

I explore the continuous heterogeneity of my treatment effects across the premium distribution, as well

as important differences along covariate margins. My discrete treatment already highlights important

differences between North Carolina and Florida. Mainly, premium decreases have no effect in North

Carolina and positive effects in Florida. I suggest that this difference can be explained by the prior

experience of flooding and the salience of flood risk within each state. In North Carolina, hurricanes

and flooding are much less common compared to the frequencies in Florida. Additionally, the amount

of available floodplain to be developed and the amount of floodplain that is already developed are

significantly lower in North Carolina. For these reasons, one would expect the reform to be less salient in

North Carolina. Hence, the effect of the reform likely operates through a behavioral model of information

acquisition, as opposed to moral hazard. Put simply, agents in North Carolina are less likely to know

their true underlying flood risk, and the price reform signals important information to unaware property

buyers. This is in contrast to moral hazard behaviors, where buyers know that flood risk is far greater

than the price of risk, and only develop because the price is distorted.

My results confirm these mechanism hypotheses. In North Carolina, areas outside the floodplain

drive the negative decreases in development in response to premium changes. Furthermore, areas with

less experience of hurricane-force winds, fewer NFIP policies, and fewer secondary homes account for the
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majority of the negative development effect.5 This is consistent with a model of information acquisition

and updating of risk priors. Conversely, I find very different results in Florida. The negative development

effects are mainly driven by floodplain areas and in places with a high percentage of secondary homes.

There are no meaningful differences along the flood risk information proxies of hurricane experience and

NFIP policies. These results are consistent with a decrease in moral hazard behavior. Agents are no

longer willing to locate in high-risk, flood-prone areas at the new price, regardless of the level of flood

risk information. The moral hazard behavior is further confirmed through the stronger effects in areas

with more secondary homes, as these are relatively more voluntary development decisions. This suggests

that this type of development was only occurring due to the price distortion, despite agents knowing the

risk.

The paper proceeds as follows. Section 2 outlines the existing literature and my contributions to each

strand. Section 3 covers the relevant institutional background of the National Flood Insurance Program

and the way it calculate premiums. Section 4 describes my setting and data sources. Section 5 introduces

my empirical strategy and my econometric framework. Section 6 presents my main empirical results,

Section 7 discusses heterogeneity of my results by covariates and premium levels, and Section 8 shows

they are robust to a number of alternative assumptions and specifications. Section 9 concludes.

2 Related Literature

I contribute to a very robust literature in economics, urban planning and insurance that has studied the

National Flood Insurance Program extensively. First, I extend the literature on moral hazard (Conte

and Kelly, 2018; Hudson et al., 2017; Peralta and Scott, 2024) and adverse selection (Bradt et al.,

2021; Wagner, 2022) in the NFIP, focusing on a type of moral hazard that is different than what has

been studied previously. Moral hazard in the current literature addresses risky decision making after

a household acquires flood insurance, particularly investigating the extent of their disaster-mitigation

activities once they are insured (Hudson et al., 2017) or the evolution of population sizes in communities

(Peralta and Scott, 2024). Instead, I provide evidence about moral hazard related to development

decisions, showing that distorted flood insurance prices have led to riskier development that would not

have otherwise occurred if the risk had been correctly priced. Notably, this is different from prior research,

as I can isolate the effects of flood insurance price changes alone, as access to insurance was the same

throughout my sample.

Additionally, my paper is related to Ortega and Petkov (2024) and Mulder and Kousky (2023), who

study the effect of Risk Rating 2.0 on entry and exit of policyholders in the NFIP and the impact of the

reform on premiums broadly. Ortega and Petkov (2024) find that RR2 increased exit and reduced entry

in both the floodplain and surrounding areas. My findings complement this analysis by providing causal

estimates of development decisions in response to the price reform, with the significant decreases likely

contributing to decreases in entry of the program, as less development would lead to fewer potential NFIP

customers. Using data on renewing policies from the NFIP, Mulder and Kousky (2023) find that Risk

Rating 2.0 led to higher premiums for more than two-thirds of policyholders. I am able to extend their

findings by calculating hypothetical premium changes for all areas using the technical documents released
5Secondary homes or non-primary residences are homes where a home-owner does not live a majority of the year. One

can think of these as vacation homes.
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by the consulting firm hired by the Federal Emergency Management Agency (FEMA) to construct the

new rating methodology. This data work allows my analysis to consider effects on agents outside of the

NFIP, which prior studies were unable to do with their current measures.

Next, I contribute to a literature that documents effects of NFIP regulations and program participa-

tion on housing prices and development (Ostriker and Russo, 2024; Georgic and Klaiber, 2022; Indaco et

al., 2019; Browne et al., 2018; Hino et al., 2023; Agopian et al., 2024; Shi et al., 2023; Noonan and Liu,

2019, 2022; Noonan and Sadiq, 2019). Many of these papers exploit community entrance into the NFIP

as well as regulatory flood zone boundaries to identify causal effects on housing prices and development,

in both the short run and the long run. In my setting however, I abstract from any differences in regu-

lation between the floodplain and non-floodplain, as RR2 does not change any regulations or access to

insurance. It purely changes the price of flood insurance.6 This unique feature of the policy allows me

to isolate the effect of flood insurance price changes and to examine the potential responses of agents

who are not already in the NFIP, a context that is rare for the literature, as prior price reforms mainly

affected existing policyholders. This allows me to provide novel estimates of the effect of flood insurance

price changes on development decisions, building on the results from Ostriker and Russo (2024) and

Browne et al. (2018), who provide evidence that NFIP program participation affected development in

the long run and the short run, respectively. My results provide evidence that in addition to the regu-

latory effects, the price of flood insurance can have important impacts on development decisions in the

short run, expanding the scope for how policy-makers think about climate adaptation. Furthermore, to

the best of my knowledge, my elasticity estimates of new development with respect to premium changes

are the first of their kind in the literature.

Finally, I also contribute to the rich literature on flood risk information frictions (Bakkensen and Bar-

rage, 2022; Gallagher, 2014; Mulder, 2024; Kousky, 2010; Weill, 2023; Petrolia et al., 2013; Fairweather et

al., 2023; Chivers and Flores, 2002). Much of this literature has found that agents greatly underestimate

their true flood risk and are not able to learn effectively from new information on flooding. My results

extend many of the findings from these papers by showing that the price of flood insurance can be a very

effective and strong signal of underlying flood risk, even in areas where there is no mandatory purchase

requirement. These results are in line with how FEMA itself views the benefits of RR2, as the agency

argues that the new prices lead to "better risk communication" (Horn, 2022).

3 Institutional Background

3.a National Flood Insurance Program (NFIP)

The NFIP was founded in 1968 with two primary goals: 1.) To constrict development in land exposed to

flood hazards and guide development away from such locations, and 2.) to provide insurance for at-risk

property owners. At the beginning of the 20th century, flood insurance was offered by private insurers, but

the losses, damage and displacement incurred by the 1927 Mississippi River floods permanently altered

that market, and led most insurers to stop providing flood policies. With no active flood insurance

market left, post-flood financial relief only came through federal disaster funds. From this period up

until the passage of the National Flood Insurance Act of 1968, the federal government provided funds for
6Additionally, I explicitly control for differences in the two areas within my model specification.
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victims of flooding (National Research Council, 2015). The NFIP served as the government’s solution

to decrease taxpayer burden by substituting insurance payouts for federal aid, thus shifting the risk to

homeowners who decide to locate in areas with high flood risk.

Communities voluntarily participate in the NFIP to unlock flood insurance access for their residents.

Acceptance is tied to each community’s adoption and enforcement of floodplain management standards,

which ensure the NFIP’s policy goal of limiting development in the floodplain. To determine a com-

munity’s flood risk, FEMA is responsible for completing Flood Insurance Studies (FIS) in coordination

with communities to locate flood sources, areas of risk, and designations of flood zones (Horn and Webel,

2024). These FIS are then used to create flood maps known as Flood Insurance Rate Maps (FIRMs),

which outline the official boundaries of a community’s flood zones. Under RR1, FIRMs were used to

determine premiums and whether a property falls within an SFHA. Under RR2, FIRMs are only used

for property location purposes to determine mandatory purchase requirements.7

At the NFIP’s inception, many structures had been built in the floodplain with little knowledge or

care of flood risk, due to both a lack of information from the federal government and lack of zoning or

other land use restrictions by local governments. As a result, these properties would face exorbitantly

high risk-based premiums under the NFIP, which led to Congress establishing two rating systems for

premium setting (National Research Council, 2015). Structures built in the floodplain after a FIRM had

been issued would pay risk-based rates, and structures built in the floodplain prior to a FIRM would

pay a subsidized rate, commonly referred to as a "pre-FIRM" rate. The expectation was that these

properties were high risk, and would eventually be lost to flooding or storms, and thus this would be

a temporary subsidy. That expectation proved to be quite wrong. As of October 2023, approximately

15% of NFIP policies still received a pre-FIRM subsidy according to FEMA (Horn and Webel, 2024).8

3.b Risk-Rating 1.0 (Pre-October 2021)

Prior to implementation of Risk Rating 2.0, premiums were determined based on several basic character-

istics that classified properties according to flood risk: Flood zone, occupancy type9, and elevation of the

structure relative to the Base Flood Elevation (BFE), which is equivalent to the level of the 1%-annual

chance flood.10 FEMA would then calculate average expected losses for groups of structures that are

similar in flood risk and structural features, and assign the same rate to all policies in that group (Horn,

2022). These groups were constructed across many different geographies and topographies, resulting

in coarse premium assignment as mentioned above. Two different properties with the same calculated

measures of risk (i.e. single family homes, with a basement, 3 feet above the BFE) would receive the

same rate despite being located in two different states, with different topography and hydrology. Fur-

thermore, two identical properties in the same flood zone would be charged the same rate regardless of

their location within the zone.

Under RR1, FEMA only modeled the potential for coastal storm surge and fluvial (river) flooding

risk. Models of physical processes that focus on flooding sources are combined with weather models,
7An example of a FIRM (using Brown University as the central location) can be found in Appendix Figure A.2
8Under current law, mainly the Homeowner Flood Insurance Affordability Act of 2014 (HFIAA) and Risk-Rating 2.0,

these subsidies are being gradually phased out, subject to annual increase caps. See Table 4 in Horn and Webel (2024) for
more information.

9Occupancy types include single family, 2-4 family, other residential, non-residential business or other non-residential.
Most of these categories carry over into RR2, with some extensions and modifications.

10BFE is only used for full-risk (i.e. non-Pre-FIRM) rates in the SFHA.
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structure vulnerability and flood protection measures (e.g. levees) to compute flood depths, velocities

and their probability of occurring. These predictions are then used to determine the expected economic

loss due to flooding and the probability of that loss. The final insurance rate is then determined from

this loss after adjusting for expenses, deductibles and under-insurance rates (Horn, 2022). These rates

are then made available to insurance agents in table-format as shown in Appendix Figure A.1.

Despite all of these price distortions, under RR1, FEMA considered these to be "full-risk" rates

that were reflective of the true underlying flood risk that faced the policyholder. However, as noted

prior, the NFIP has also been subsidizing rates for large portions of its customer base since its inception

(i.e. pre-FIRM subsidies) and offers even more subsidies applying to different groups and contexts.

The NFIP previously offered subsidies for properties that experienced changes in their flood zone status

or their flood zone requirements. "Grandfather" subsidies applied to properties that were mapped

between different flood zone types (e.g. Zone A vs. Zone V), allowing policyholders to maintain the

lower rate based on the prior zone.11 "Newly Mapped" subsidies applied to policyholders that were

mapped into an SFHA after a FIRM update.12 Finally, the Community Rating System (CRS), which

is still in place, allows communities to accrue additional discounts for their residents by undertaking

additional floodplain mitigation measures above what is required by normal program participation. These

discounts can range from 5-45% depending on the level of measures enacted. Thus, on top of existing

price distortions underlying the "full-risk" premiums, additional distortions are compounded with the

existence of subsidies.

3.c Risk-Rating 2.0 (October 2021 - Present Day)

Risk Rating 2.0 corrects many of the price distortions that existed in RR1 and gradually eliminates

subsidies for existing policyholders. These reforms bring the "full-risk" premiums offered by the NFIP

closer to actuarily fair measures of true flood risk. Under the new pricing system, rates will now be tied

to the geographic and structural features of each individual property as opposed to the broader groups

defined under RR1.

RR2 incorporates a much broader range of flood sources and frequencies into its risk modeling process,

including flooding due to rainfall (i.e. pluvial flooding), tsunamis, Great Lakes, coastal erosion and

flooding in leveed areas. To account for these new sources, RR2 uses three commercial catastrophe

models to estimate future loss potential, a major improvement over RR1 which relied on a single model

with only two flood sources. To tie premium calculations to new flood sources, many more geographic

variables are needed for each structure when producing a premium for a policy. These include distance

to water sources (e.g. rivers, lakes, or coast), the drainage area of the nearest flow-line source (usually

a river), elevation of the structure relative to the flooding source, elevation of the structure compared

to its relative area, and whether the structure is on a barrier island or behind a levee (Milliman, 2022).

Individual structure characteristics considered now include the foundation type, the height of the lowest

floor relative to the BFE, number of floors, presence of machinery and equipment on the ground floor,

and the building replacement cost value.

Under RR1, rates were based on the amount of insurance purchased for a structure, rather than the
11Flood zone types can be generally defined by three categories: A Zones are SFHA areas with flooding risk from riverine

and lake sources. V Zones are SFHA areas with flooding risk from coastal storm surges and other wave-related flooding
sources. X Zones are non-SFHA areas with minimal flooding risk.

12These were available only for policies underwritten on or after April 1, 2015.
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replacement cost value. This resulted in major price distortions fueled by inequity in housing values.

For example, if a million-dollar single-family home was built next to a $100,000 single-family home, and

both purchased $50,000 in coverage (and were at the same elevation), they would pay the same amount

for their annual premiums, despite the fact that if they both experienced the same flood, the damages of

the million dollar home would result in much higher claims. RR2 corrects this inequity with the addition

of replacement cost values into the rate calculation methodology.

FEMA argues that the implementation of RR2 is a more transparent and accurate measurement

of flood risk pricing that will lead to "better risk communication and an increase in flood insurance

take-up rates" (Horn, 2022). Critics of RR1 would likely agree that RR2 provides more accurate risk

measurements, based on all of the changes I have outlined above. Transitioning from broad risk groups

to granular individual ratings is sure to provide more accurate pricing. However, transparency of the

rate calculation process seems to have gotten worse under RR2. Since premiums are based on individual

property characteristics, flood zones and rate tables are no longer used to determine premium amounts.

Flood zones are still used to determine which properties are subject to the mandatory purchase require-

ment however. Under RR1, insurance agents relied on FIRMs and rate tables to manually calculate

premiums and show customers visually where the dollar amounts are originating. Now, under RR2,

insurance agents rely on a "black box" algorithm that returns a premium calculation based on inputs

(mainly an address), making it much harder to explain what is driving premium costs.13 While informa-

tion on the premium calculations exist and is publicly available, it requires a rather esoteric knowledge

to interpret.

4 Setting and Data

I focus on North Carolina and Florida for my empirical context. Both states have ample experience with

hurricanes and flooding, and large proportions of their area covered by floodplains (although at much

different rates). Thus, they should be excellent candidates to test whether flood insurance price reform

has an effect on development decisions. I combine two rich sources of granular data to construct my

sample and run my analysis.

4.a Tax Parcels

My analysis relies primarily on administrative tax parcel data from North Carolina and Florida. Both

datasets are obtained through state-run sources and provide the geo-located boundaries of each tax

parcel in the state. For each parcel, the year of construction for the primary structure is reported, which

I will use as my main measurement of development, my primary outcome. For Florida, I also use other

parcel-level assessment valuations, sales price records, and measurements of living area and the number

of units, as alternative outcomes. In North Carolina, data reporting issues only allow me to include 47

out of the 100 total counties in the state.14 However, as you can see in Figure 1, the missing counties
13In insurance manuals under RR1, there were numerous rating examples at the back of the manual that could be easily

followed by inputs from tables as in Appendix Figure A.1. Now, in the rating manuals under RR2, the examples include a
footnote saying "All components of the total amount due will be calculated by the FEMA system."

14The statewide parcel database for North Carolina is compiled by collecting tax parcel data from each county individually.
However, there is significant variation in the processes each county uses to collect and report their specific tax parcel data.
Unfortunately, a large portion of counties do not report primary structure construction years for their tax parcels, causing
me to drop them from the analysis.
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are not concentrated in any specific part of the state, leaving relatively uniform coverage.

4.b Flood Zones

Data on flood zones comes from the National Flood Hazard Layer (NFHL), which is a geospatial database

that contains current effective flood hazard data. This includes the boundaries of each flood zone across

both states, as well as measurements of the base flood elevation (BFE). I overlay the NFHL with the parcel

data to determine what percentage of each parcel lies within the floodplain. The BFE measurements are

then used to inform rating calculations under RR1 and flood zone overlap areas are used to construct

my observation units when aggregating to the block group-floodplain level. The overlap areas determine

whether a block group falls entirely with the floodplain or not, or determines the new shapes within a

block group that delineate the floodplain and non-floodplain portions. Distances to flood zone boundaries

are calculated using the parcel centroid as a reference point. These flood zone area shapes can be seen

in Figures 1 and 2, highlighted in light blue.

4.c Topographical and Hydrological Measures

To calculate parcel-level premiums under RR2, I use data on elevation and hydrology from the United

States Geological Survey (USGS). The 1/3 arc-second Digital Elevation Model (DEM) provided through

USGS provides 10x10 meter grids of elevation measures for each state that I can then map to each

parcel. Additionally, data from the National Hydrography Dataset (NHD) and the National Watershed

Boundary Dataset (WBD) provide geo-located measures of rivers, lakes and drainage areas. Using these

two hydrological datasets, I can construct measures such as distance to flooding sources and nearest

drainage amount.

4.d Leveed Areas and Barrier Islands

Following conventions outlined in Milliman (2022), I manually construct measurements of barrier islands

by drawing polygons around selected island areas that are completely detached from the mainland.15

I then map these new barrier island polygons back to the parcel data to identify parcels that are on

barrier islands. Data on leveed areas comes from the National Levee Database, which is administered

by the U.S. Army Corps of Engineers. This provides polygons of areas protected by levees as well as

information regarding the specific characteristics of each levee.

4.e Other Data

I use a variety of other data sources to explore robustness and heterogeneity of my main results. First,

I have data on individual NFIP claims (from 1978-2023) and policies (from 2009-2023) that provide

information on claim amounts, flood damages, and program participation for policyholders. Next, I use

data from the 5-year American Community Surveys (ACS) for measurements related to demographics,

income, and housing at the block-group level. I use data from USGS stream gauge monitors to measure

stream-flow flooding conditions, annual average rainfall measurements from DAYMET, and geo-located

hurricane storm paths from the NOAA HURDAT Best Track data to measure weather conditions over
15These drawings are done in QGIS. See the appendix for more details.
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my sample period. Finally, I use data from the USGS Protected Area Database to identify protected

federal lands and data from the US Forest Services Land Fire program to measure elevation slope.

4.f Premium Calculations

To construct my main treatment measure, I calculate premiums at the parcel level under RR1 and RR2.

For each parcel, I use the block group-floodplain averages from the NFIP policy data to assign measures

of building replacement cost values and coverage amounts. Using the insurance rating manual from April

2021, I construct the hypothetical premium of building a single family home on each parcel, using the

mapped coverage amounts, flood zone assignment, and elevation relative to the BFE.16 Next, following

the technical materials in Milliman (2022), I calculate the hypothetical premium of building a single

family home on each parcel under RR2. For these calculations, I use parcel-level measures of distance

to river, distance to coast, distance to ocean, elevation, relative elevation (within 500 meters), barrier

island status, leveed area status, total flow-line drainage, in addition to the mapped coverage amounts

and replacement cost values. Each measure is then averaged at the block group-floodplain level, so I can

construct my final treatment measure:

Di = log(Premium
RR2

i )− log(Premium
RR1

i ) (1)

where i is a block group-floodplain unit of observation and Premiumi is the block group-floodplain

average of parcel-level premium calculations. Di is the log difference of the average hypothetical premium

under each price regime, which will give me the approximate percentage change of flood insurance

premiums faced by developers and potential new customers.17

Maps of Di are constructed for each state in Figures 1 and 2. The red shading denotes areas

that experience any positive increase in their premium, even as small as $1, while the orange denotes

decreases. In both states, you can see significant variation in the treatment measure over the entirety

of the state. Premium increases are not concentrated on the coast, and likewise, premium decreases are

not concentrated in inland areas. However, in both states, one might notice that areas with premium

decreases are often following the shapes of river polygons, particularly inland. These patterns highlight

the newly introduced variation in premium pricing across flood zones. As mentioned above, the transition

from using flood zones to individual properties in order to determine premiums results in variation in

premiums across flood zones of the same type. While many of these inland riverine areas still face flood

risk, prices under RR1 in those areas were far too high for the true level of flood risk. This is precisely

due to the fact that under RR1, all flood zones of the same type were treated as equals. Now, the pricing

scheme can recognize that it doesn’t make sense to charge an inland river area the same as a coastal

river area, as they likely face very different flooding conditions and risks. Appendix Figures A.4 and A.8

illustrate these decrease patterns more clearly.

Figure 3 plots the distribution of premium changes for both states. In both North Carolina and

Florida, the distribution follows a similar pattern, with the largest mass being centered around zero

or moderately positive increases, and long tails of decreases and extreme increases. Dissecting these

changes further in Figure 4 shows that nearly all of the significant decreases in premiums are occurring
16I assume the single family home has no basement and only one floor.
17I use the log difference instead of the percentage change to account for any asymmetry around zero, as percentage

decreases in premiums would be bounded by -1.
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in the floodplain, for the same reason discussed above about the prior treatment of all floodplains

as equals. Furthermore, these distributions show that Florida is experiencing much higher premium

increases compared to North Carolina, with maximum increase amounts about 5 times larger. This is

reflective of the fact that Florida has a much higher average flood risk than North Carolina and therefore,

should pay more in total flood insurance amounts. Before, under RR1, the price of risk was unevenly

distributed across states, resulting in places with lesser risk (like North Carolina), subsidizing the true

cost of flood risk for more dangerous states such as Florida. FEMA sees this more accurate and equitable

distribution of premiums and risk to be one of the major benefits of RR2 (NFIP, 2023).

4.g Analysis Sample

I construct two separate analysis samples for both North Carolina and Florida, and calculate my outcome

and treatment measures at the parcel level. These measurements are then averaged over the block group-

floodplain unit. I separate block groups by their floodplain status to account for regulatory differences

between the floodplain and non-floodplain areas of each state. As mentioned prior, floodplains require

stricter building standards and alternative regulations compared to their non-floodplain counterparts in

the same community, which could introduce bias into my estimates. Block groups can either be fully in

a floodplain, fully outside a floodplain, or have a portion dedicated to both. Table 1 reports summary

statistics by state, highlighting key differences in floodplain area distribution. In North Carolina, a

limited amount of block groups are fully within a floodplain, while in Florida there are considerably

more, reflecting the larger prevalence of floodplain development and land availability across the state.

A key challenge when creating my analysis sample is to drop observations that do not contribute to

my identifying variation without introducing selection bias. Thus, each sample restriction needs to be

carefully chosen to cut out parcels that cannot credibly be developed, or are so far removed from flood

risk that the reform will have no effect on their development status. This leads me to restrict my samples

to all "potentially developable" parcels that are undeveloped in 2015, the year before my sample period

begins. I drop parcels that are government-protected or publicly-owned lands as well as parcels that

are described as schools, institutions, agriculture and churches. These parcels will likely face a different

development decision when compared to a residential or commercially-owned parcel. Furthermore, I

restrict to all parcels that are within a mile of a flood zone to ensure there is some measure of salience for

the price reform.18 Finally, I drop parcels that have an elevation slope of 25% or greater, as development

on these parcels is much more difficult and faces different regulations.19 After dropping all of these

parcels, I then aggregate my data up to the block group-floodplain level for my analysis.

My main outcome variable is the percentage of newly developed parcels within a block group-

floodplain. I use an average share as opposed to counts so that I can compare more easily between

block groups with different numbers of available vacant parcels.20 To better reflect the decision perspec-

tive of the developer, I update the number of available vacant parcels each year to account for the newly

developed parcels, resulting in the measurement of my outcome as such:
18In practice, this is not too extreme of a restriction as most parcels are within a mile of a flood zone. This just ensures

that parcels that have close to zero flood risk are excluded from my sample.
19This is standard practice within the literature.
20However, results are also robust to including measures of total parcel counts in my model specification.
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yit =



NewDevit
AllParsit

, if y = 2016

NewDevit

AllParsi(t=2016) −
∑t−1

t=2016 NewDevit
, if y > 2016

(2)

where NewDevit is the number of newly developed parcels and AllParsit is the number of vacant parcels

in block group-floodplain i in year t. In 2016, this fraction is simply the number of newly developed

parcels in 2016 divided by the starting number of vacant parcels in my sample period. For years after

2016, the denominator reflects the updating count of vacant parcels as development occurs over the

sample. I prefer this measurement to a static denominator as it better reflects the development decision

environment a developer will face in each given year.21

Table 1 shows that the mean development share is roughly similar between the two states within my

unit of observation: 5% for North Carolina and 6% for Florida. However, over the sample period, North

Carolina actually develops more parcels than Florida, which might be surprising considering Florida is

larger and has more parcels and available land. This is likely due to the fact that in the Florida data, I

can more accurately identify vacant parcels that are suitable for development as there is a standardized

land use code that is consistent over time and counties. For North Carolina, I have to rely on string

descriptions that likely increases measurement error and over-inflates the parcels I end up including in

my sample. Including extraneous parcels with no likelihood of development likely biases my results

downward for North Carolina.

5 Empirical Strategy

The core of my identification strategy relies on a difference-in-differences (DID) framework where I

compare units with significantly large premium changes to units with little-to-no premium changes. In

an ideal setting, I would use all of the continuous variation in my treatment variable, Di, in a standard

two-way fixed effects (TWFE) specification as was standard in the prior literature:

yit = αi + γtf + β · (POSTt ·Di) + ϵit (3)

where yit is the share of new development in block group-floodplain i in year t, αi is a block group-

floodplain fixed effect, γtf is a year by floodplain status (f ∈ {Floodplain,Non-Floodplain}) fixed effect,

POSTt is a indicator equal to 1 in years 2021-2023, Di is my continuous measure of calculated average

premium changes, and ϵit is an error term capturing any unobserved omitted influences. However, recent

work by Callaway et al. (2024a) show that there are considerable weighting and interpretation issues

with β. In particular, they illustrate that in the past researchers have interpreted β as a level treatment

effect, a scaled level treatment effect or even an elasticity-type marginal effect and show there are unique

weighting issues with each interpretation. They propose both new assumptions and new estimators to

address these shortfalls, which I employ later in the paper to explore heterogeneity in my ATTs across

the premium change distribution.

To start, I employ binary and discrete versions of my treatment variable, Di, to summarize average
21I show robustness to my outcome measurement in Table X, where I impose a fixed denominator for the number of

available parcels.
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treatment effects on the treated (ATTs), and build intuition towards the new continuous estimator for my

setting. First, I will define new treatment variables to fit the non-continuous framework. Let median(Df )

be the median value of Di within floodplain type f . Then, the binary version of my treatment variable

will be:

di =

1, if Df
i > |median(Df )|

0, otherwise
(4)

where |median(Df )| is the absolute value of the f -specific median Di.22 This defines the treatment

group as block group-floodplains that receive any significant changes in their premium as a result of Risk

Rating 2.0. Replacing Di for di yields a slightly different specification and interpretation of β:

yit = αi + γtf + β · (POSTt · di) + ϵit (5)

I view this as a test of the price reform overall, as it will include the effects of both increases and

decreases in premiums on new development. Assuming symmetric responses to the pure price effect of

the reform, one would expect positive increases in premiums to lead to decreases in development and

decreases to lead to increases in development. Thus, β in Equation 5 will be the effect of transitioning

flood insurance prices from their distorted version to actuarily correct values. This will provide a strong

test of whether the NFIP was contributing to moral hazard within development decisions. If β is

negative and significant, accurate pricing of risk led to less development overall, strongly suggesting that

the prior pricing system distorted development incentives through the under-estimation of true flood risk

on average. If β is positive and significant, this would suggest that true flood risk was over-estimated on

average and the correction led to more development. In this specification, β is identified under a standard

parallel trends assumption: In the absence of Risk Rating 2.0, treated units’ average new development

share would have evolved in the same way as the observed path of the untreated units.

Recognizing that Equation 5 could be too limiting, I allow for treatment heterogeneity by positive

and negative premium changes to investigate the symmetry of responses and test whether there are

significant effects on both sides of the premium change distribution. Now, treatment is defined:

di =


Increase, if Df

i > +median(Df )

No Change, if +median(Df ) <= Df
i >= −median(Df )

Decrease, if Df
i < −median(Df )

(6)

with the corresponding specification:

yit = αi + γtf +

J−1∑
j=1

βj · (POSTt · 1{Di = dj}) + ϵit (7)

where dj ∈ {Increase,No Change,Decrease}, +median(Df ) is the positive value of the f -specific median

Di, and −median(Df ) is the negative value of the f -specific median Di.23 The omitted category is

the "No Change" group, leading to the interpretation of βj to be the effect of each treatment group dj

22Median values of Di for North Carolina are 0.60 in the floodplain and 0.28 outside the floodplain. Median values of
Di for Florida are 0.72 in the floodplain and 0.40 outside the floodplain

23Concretely, if looking at the median value of Di for the North Carolina floodplain, +median(Df ) = 0.60 and
−median(Df ) = −0.60
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relative to the group that received no significant change in their premiums. This specification allows me

to test for treatment effect heterogeneity across different parts of the premium change distribution and

test priors on symmetry in responses. In this specification, each βj is identified under a standard parallel

trends assumption: In the absence of Risk Rating 2.0, both "Increase" and "Decrease" units’ average

new development share would have evolved in the same way as the observed path of the "No Change"

units.

In all specifications, to account for potential serial correlation of the observations from the same

block group, I adjust standard errors by clustering at the block group level and allowing for an arbitrary

variance-covariance matrix within each block group over time. I elect not to cluster at the block group-

floodplain level (i.e. my unit of observation) as it is likely that there is within block group correlation of

errors across the separate units.

6 Results

6.a New Development

Table 2 reports my main empirical results from equations 5 and 7. Columns 1 and 3 show the impact

of Risk Rating 2.0 overall in both states. Each coefficient (β) is statistically significant and negative,

implying that the total effect of the price reform led to less development. This is strong evidence that the

NFIP was indeed contributing to moral hazard in development decisions and fueling building in riskier

areas. Furthermore, this also provides evidence that the premium prices are sending new information

about underlying flood risk. Both coefficients are of an economically meaningful magnitude as well. In

North Carolina, Risk Rating 2.0 led to a decrease in the share of new development of about -0.015pp

for the average block group-floodplain. Compared to the control mean of 0.055, this effect corresponds

to a decrease in new development of 27%. In Florida, results are a bit more muted, but still large and

impactful, as the -0.0046pp decrease over a control mean of 0.047 corresponds to a 10% decrease in

development on average. The differences between the states in the magnitude of their response reflects

differences in experience with flooding, familiarity with the NFIP, available floodplain area, and salience

of the reform.24 Florida’s magnitude is likely smaller due to the fact that much more of their area is

covered by floodplains, making a shift in development harder to accommodate if suitable alternatives are

limited.25

I explore the dynamic effects of my treatment by altering the specification in Equation 5 slightly:

yit = αi + γtf +

T∑
t̸=2020

βt · (kt · di) + ϵit (8)

where kt is an indicator variable for year t, and βt is the year-specific coefficient of interest. The year

2020 (which is the year prior to RR2 implementation) is dropped and used as the reference period as is

standard practice. Figure 5 displays the results of Equation 8. This figure displays interesting differences

in dynamics between the two states. In North Carolina, the reform seems to take effect gradually, with

the largest decrease in development coming in the last year of the post-period (2023). Conversely, the

reform has an immediate effect in Florida. The dynamics of these states shed light on the mechanisms
24These results are further explored in Section 7.
25Evidence of the difference in floodplain area can be found in Table 1 and Figure 2.
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in which I expect the reform to operate and also on the difference in magnitudes mentioned above. The

gradual increase in treatment effects for North Carolina is strongly suggestive of updating priors through

information acquisition. The reform seems to be signaling new information to developers and prospective

property buyers about underlying flood risk, as opposed to a pure price shock. Conversely, the immediate

effects in Florida suggest that developers are responding to the price shock, as opposed to any sort of

information acquisition. This is further confirmed by the relative uptick of the reform in 2023. Due to

Florida’s experience with flooding and amount of floodplain land, it is not surprising that development

would be more responsive to price if agents are already aware of underlying flood risk through experience

and salience. Table 1 shows that the average county in Florida has much more of it’s area covered by

floodplains, along with significantly higher amounts of NFIP policies and claim amounts, and experience

with hurricanes. Thus, one should expect Risk Rating 2.0 to be a much more salient issue in Florida

than North Carolina, leading to more immediate results.

When I discretize my treatment further and explore heterogeneity by increases and decreases in

premiums, the results tell a similar story. Columns 2 and 4 show that the overall price reform effects

are being entirely driven by areas that experience an increase in their premiums. In North Carolina,

increases in premiums led to a 36% decrease in the share of new development compared the control mean

and in Florida, a 14% decrease. Furthermore, in North Carolina, there is no meaningful response to

premium decreases, as the βDec coefficient is quite small and statistically insignificant. In Florida on the

other hand, there seems to be evidence of a symmetrical response, as βDec is positive and statistically

significant and of a similar magnitude compared to βInc. The fact that |βInc| > |β| and βDec > 0 for

both states suggests that including the decreases in the treatment group in columns 1 and 3 is likely

leading to attenuation in β. The fact that I still find significant negative effects on new development

when including this attenuation provides strong evidence that only the increases in premiums are driving

results and that overall, the reform led to less new development. Furthermore, the symmetric response

found in Florida confirms prior discussions of the information mechanism difference between the two

states. Responses to both increases and decreases in premiums in Florida suggests a pure price response,

as development is moving with price. On the contrary, North Carolina’s lack of response to decreases is

indicative of information updating.26

I explore these results visually by extending Equation 7 to its event-study equivalent. Figure 6

shows the dynamic estimates for each state, split by increases and decreases in premiums. In North

Carolina, there is a similar pattern in treatment dynamics with the increase series, compared to the

binary treatment in Figure 5. This confirms the results shown in Table 2, which imply that increases in

premiums are driving the main findings. Additionally, there is no evidence of an effect from decreases

in premiums, as that series is flat across all time periods. In Florida, I find that the dynamic effects for

areas with premium increases are also driving the main results, as that pattern is similar to the binary

treatment. The decrease series on the contrary, shows some concern for pre-trend issues as estimates

are statistically significantly negative for the years 2016 and 2017, and relatively flat and insignificant in

the post-period. This rightfully calls into question the results I was finding on premium decreases in the

static regressions.

Since Di is not randomly assigned, it is important to verify that the fixed differences between treated
26These results are further explored in Section 7a where I show important differences along covariate margins that proxy

for flood risk information.
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and control units would not have led to a violation of my identifying parallel trends assumption. To

test this, I can include pre-RR2 year indicators in my specifications to investigate whether there are

differential trends prior to RR2. As an example, the specification for the binary case becomes:

yit = αi + γtf + β · (POSTt · di) +
∑

t<2020

ϕt · (kt · di) + ϵit (9)

where kt is an indicator variable for year t. With this specification, I can then jointly test if all of the

included pre-trend indicators (ϕt) are equal to zero. If I am unable to reject the result of this test, I

can conclude that parallel trends is likely to hold. For each column in Table 2, I report the p-value of

the joint F-Test that ϕt = 0 ∀t < 2020. In columns 1 and 3, I am unable to reject the test of joint

coefficient nullity, suggesting that my identifying assumptions are justified. Furthermore, I can show this

visually in an event study plot in Figure 5. Visually, I can confirm the results of the F-tests as there is

little evidence of any pre-trends in the years prior to RR2 for both states.

The p-value reported in column 2 shows that there is no evidence of pre-trends when splitting treat-

ment into increase and decrease groups, but for Florida, column 4 says otherwise. I am able to reject

the joint null of ϕInc
t = ϕDec

t = 0 ∀t < 2020. Exploring these trends visually in Figure 6, one can

see this test failure is entirely driven by the decrease treatment group in the years 2016 and 2017. The

increase pre-trend looks to be flat visually and is not reject-able when conducting a joint F test of

ϕInc
t = 0 ∀t < 2020. While concerning, I take this as evidence that arbitrary functional form specifi-

cations of my treatment (i.e. such as increase and decrease splits) might not be the most appropriate

model, and defer to the tests proposed in Callaway et al. (2024a) for a continuous estimator to justify my

assumptions.27 They suggest that one can run a test of parallel trends for a continuous DID treatment

by "comparing the average change in outcomes for all treated units to the average change in outcomes

for untreated units. This can be estimated by running a binary DiD with a ‘treatment dummy’ equal

to one for any units with positive doses." (Callaway et al., 2024a). Conveniently, this suggestion exactly

corresponds to my specifications in Equations 5 and 8, which show little to no evidence of pre-trends.

As mentioned above, understanding which premium change levels led to the largest effects is of great

policy interest and highly related to concerns regarding climate adaptation policy. Table 2 has already

shown some evidence of important treatment effect heterogeneity across the premium distribution, show-

ing evidence of potentially asymmetric responses in North Carolina and symmetric responses in Florida.

To continue this exploration of my ATT heterogeneity, I split my treatment groups in two, creating

"Big" and "Small" treatments within increases and decreases.28 Table 3 shows the results of this further

sub-dividing. Columns 1 and 3 show evidence of treatment effect heterogeneity across both the increase

and decrease groups. In both states, treatment effects are larger for the "Big" treatment group compared

to the "Small", for both increases and decreases in premiums. In Florida, column 3 shows that it is only

large premium decreases that are driving the significance of the positive results, which also explains why

these positive effects are not enough to outweigh the negative effects from the increase in totality. From

a climate adaptation perspective, a policy-maker might be encouraged that both large and small changes

in premium increases are leading to a shift away from riskier development, as opposed to only the largest
27Additionally, I have tested alternative specifications for Florida in column 4 that can produce better pre-trends, but I

prefer the parsimonious model so I can ensure better comparability between North Carolina and Florida and thus argue
more strongly for external validity of my results.

28"Big" and "Small" are defined as above median and below median, respectively.
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increases. It suggests scope not only for price effects, but successful risk communication as well.

Finally, columns 2 and 4 show the results from Equation 3. Despite the many issues with this

specification as outlined above, I elect to show these results for completeness and familiarity to prior

methods in the literature, as well as to illustrate the potential issues with interpretation. The coefficients

for both North Carolina and Florida are similar in magnitude and sign when compared to the binary

versions reported in columns 1 and 3 of Table 2, although both are slightly larger. The fact that the

estimates are close suggest they are highly comparable. Using these estimates, I compute an approximate

elasticity of development with respect to premium changes for each state. For North Carolina, the

elasticity is -0.32, and for Florida it is -0.11.29 While relatively inelastic, these are still economically

meaningful, as a 10% increase in the price of flood insurance leads to a 3.2% decrease and 1.1% decrease

in development on average in North Carolina and Florida, respectively.

The problem with the above results, as outlined in Callaway et al. (2024a), is the interpretation of β in

Equation 3. The most direct comparison between Equation 3 and Equation 5, β would be interpreted as

a level treatment effect. This interpretation suggests that continuous treatment (Di) led to a -0.01784pp

decrease in the share of new development on average in North Carolina. Compared to estimates in 2,

this is quite similar. My binary treatment measure (di) led to a -0.01488pp decrease in the share of new

development. However, is this the correct interpretation of β in my continuous version? Many times,

researchers report a scaled level effect of the type I report in Table 3, which is calculated by multiplying

β by the mean treatment level in the sample (i.e. for North Carolina, -.01784 × 0.114 = -0.002). This

coefficient is much smaller than the binary version now, implying treatment led to a -.002pp decrease

in the share of new development, which is only a 5% decrease over the control mean (compared to 27%

in the binary treatment version). Furthermore, many researchers often interpret β as a causal response

parameter, suggesting a 1% increase in premium leads to a -0.01784pp decrease in the share of new

development.30 Thus, this highlights the need for careful and purposeful interpretation of the causal

effect of interest, which is why I employ binary measures of treatment for level treatment effects and

then visual exploration of flexible treatment heterogeneity, as suggested by the methods in Callaway et

al. (2024b,a).

6.b Alternative Housing Variables

The Florida tax data offers a much richer and more accurate source of parcel information over time,

compared to its counterpart in North Carolina. This allows me to explore alternative outcomes related

to the reform that could also be affected by the correction of flood insurance pricing. In particular, I

am able to explore sales prices, the number of residential units and the total living area (in square feet)

at the parcel level. Table 4 reports the results of these regressions using the specification in Equation 7.

Column 1 shows that sales prices are quite responsive to changes in flood insurance prices. In areas with

increases in premiums, sales prices decrease significantly by nearly 13%. Conversely, while insignificant,

there is evidence that sales prices increase in response to premium decreases. This is consistent with

existing research by Georgic and Klaiber (2022) who find that NFIP subsidies were capitalized into
29Since my treatment is already measured as an approximate percentage change, the ATT represents the percentage

point response to a 1 unit (1%) increase in treatment. This estimate can then be easily scaled by the control mean in Table
3 to produce an elasticity estimate.

30Recall that my continuous treatment measure, Di is the log difference in premium levels, which approximates to a
percentage change.
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housing prices. Thus, it is unsurprising that the price reforms enacted through Risk Rating 2.0, which

both eliminate subsidies and correct other price distortions, have the same effect. Furthermore, this

result can provide some suggestive, partial equilibrium evidence on how supply and demand could be

shifting in response to flood insurance price changes. Risk Rating 2.0 provides an interesting setting

in which one could argue it is a pure demand shifter, as it has no effect on housing supply outside of

responses to demand shifts.31 Developers should only be altering their supply decision based on expected

demand, not on any change to their input costs or other supply shocks. Based on my main results in

Table 2, RR2 should result in an inward shift of the demand curve, driving down prices and quantities

of housing, either due to price effects or information signals about risk. If I assume the supply curve

doesn’t shift at all, an inward shift in demand would explain the decrease in sales prices found in Table

4. However, the fact that I find negative price effects suggests that even if the supply curve did shift

inward due to developer expectations of demand, it must not be enough to overtake the inward shift of

demand. This evidence suggests that the negative development effects from Risk Rating 2.0 are either

entirely or mostly driven by an inward demand shift.

Columns 2 and 3 allow me to investigate intensive margin effects of the areas that do get developed

over my sample period. Both the number of residential units and the total living area appear to increase

in block group-floodplains that receive an increase in premiums. At first glance, this seems counter-

intuitive to my main findings of decreased development in these areas. However, it is entirely possible

to have a decrease in the average number of parcels developed, while increasing units and living space.

I hypothesize that while developers are building less at the parcel level, they might try to compensate

by building up vertically. Adding an extra unit to a building or expanding the size of a building that

is already set to be built, could be subtle ways to subvert the increased premium costs that would be

accrued if building an entirely new structure on a new parcel. For multi-unit buildings, premiums are

usually handled by the Homeowners Association or Co-op board, distributing costs or leaving it up to

the unit-owner to purchase insurance. For renters, flood insurance is optional and would instead be

the responsibility of the building owner. Furthermore, if this is less price-driven and more risk-driven,

there could be higher demand for high-floor apartments if people wish to avoid structures at ground-

level. Future research into the intensive margin responses of development would be of great interest,

particularly from a climate-adaptation perspective.

7 Heterogeneity

My results in Table 2 strongly suggest that the NFIP’s prior pricing scheme was contributing to the

moral hazard of development in flood-prone areas. Now, I explore the heterogeneity of my results by

both covariate groups of interest and treatment intensity. This will help to illuminate the efficacy of this

type of policy reform, evaluate its potential for climate adaptation, and explore potential mechanisms.

7.a Heterogeneous Responses by Covariates

Ex ante, one would expect Risk Rating 2.0 to have a larger effect on floodplain development compared

to non-floodplain development due to the mandatory purchase requirement. If prospective home-buyers
31If the policy changed building regulations for example, it could effect supply by increasing the cost to build in areas

with premium increases. That is not the case however.
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have to purchase insurance they are likely going to be much more sensitive to the price than if it is merely

an option. However, it could also be the case that the customer base for floodplain development has

much lower information frictions than their counterparts purchasing land outside the floodplain. This

sub-population could be quite willing to take on the risk at the new price.32 Separately, affordability of

the new premiums under RR2 has been a significant concern. Demand in low-income floodplain areas

could be relatively inelastic due to moving constraints. Thus, responses by different covariate groups are

going to rely on empirical tests to clear up the ambiguity of their direction. Furthermore, the response

could also be dependent on the underlying conditions of each state.

Figure 7 plots the results of heterogeneity responses by covariate groups for both states. In North

Carolina, the negative development effect is being entirely driven by responses outside the floodplain.

Strikingly, there is an increase in development in the floodplain of seemingly similar magnitude. Distance

to flood zone results confirm this split, as places farther from the flood zone boundary get developed much

less. Together these results seem to suggest that RR2 had a significant and negative effect on development

in the floodplain periphery, where purchase of insurance is entirely optional. This strongly suggests that

the new prices are potentially signaling new information about risk to prospective property buyers.

There is further evidence of this type of risk signaling when using proxy measures for flood knowledge

via historical hurricane exposure and pervasiveness of NFIP policies. On both measures, I find that

in areas with less hurricane exposure and less NFIP policies, development goes down significantly, and

responds positively with high hurricane exposure and more NFIP policies, just like the floodplain results.

I take this as confirming evidence that in North Carolina, due to the limited amount of floodplain area,

RR2 led to significant decreases in places on the periphery of the flood zone that may have been unaware

of their true flood risk. RR2 seems to have alleviated information frictions in these places through the

updating of flood risk prices and prospective property buyers may now be unwilling to accept the level of

risk of building in an area that might be near a flood zone, despite not ever having experienced a flood.

Additionally, heterogeneity results for North Carolina show that it is high income and high primary

residence areas that are driving the negative responses to the reform.33 This further adds to the evidence

that the price reform is operating via risk signaling as opposed to a pure price effect in North Carolina,

as concerns of affordability should be ameliorated in high income areas that have a higher percentage of

permanent, primary residences.

In Florida, I find evidence to the contrary, as the effect on floodplain development appears to be

much larger than non-floodplain development (although much noisier). The other heterogeneity results

show that there are not clear differences in responses along income or proxies for flood knowledge as

in North Carolina. The most significant difference occurs when looking at the presence of primary

residences. Here, I find that areas with a lower percentage of primary residences (i.e. more secondary

or vacation homes) are driving the negative development effects in Florida. Taken together with the

fact that more of the effect is coming from the floodplain and there are no clear differences along flood

knowledge lines, this suggests that the price reforms are much more indicative of moral hazard corrections

as opposed to risk signaling in North Carolina. It appears that prospective property buyers likely knew

the risk being faced in these areas, but now are unwilling to pay the cost. This would be consistent
32Anecdotal evidence of this type of risk-taking can be found in the New York Times: "Home Sales in Flood Zones Are

Booming. Here’s Why Buyers Take the Risk", September 14, 2024.
33Primary residence is the place where a homeowner lives the majority of the year, unlike a secondary residence, which is

most often a vacation home. Thus, places with low percentages of primary residences are much more likely to be vacation
spots.

20

https://www.nytimes.com/2024/09/14/nyregion/new-york-home-sales-flood-zones.html
https://www.nytimes.com/2024/09/14/nyregion/new-york-home-sales-flood-zones.html


with Florida’s comparatively larger floodplain land area and experience with flooding when compared to

North Carolina.

7.b Heterogeneous Responses Across the Premium Distribution

Next, I turn to further heterogeneity analysis by exploring the effects across the premium change distri-

bution. As stated prior, understanding which parts of the premium distribution are driving results is of

key interest to climate adaptation potential, as I can test whether all units respond to premium changes,

or if it is only among units that experience certain levels.

My prior results have explored this briefly by separating my treatment effects by increases and

decreases, but now, I extend this analysis and specify a more flexible and discretized version of treatment.

I create indicators for treatment bins based on the following quantile lists for increases and decreases

(starting at the median value that defines treatment). Increase bins are defined by the 0, 15th, 30th,

45th, 60th, 75th, 90th, and 100th percentiles (7 bins). Decrease bins are defined by the 0, 33rd, 66th,

and 100th percentiles (3 bins). Figure 8 plots the results of this exercise for both North Carolina and

Florida.

In North Carolina, there is no evidence of premium decreases having any effect on development, while

premium increases lead to larger and larger decreases in development as the premium change itself grows

in magnitude. Premium increases start to produce significant effects around 40%, which is encouraging

when thinking about climate adaptation potential. If development is also responding to lower levels of

premium changes, prospective property buyers are likely inferring signals about risk through the price,

which is consistent with the prior heterogeneity results by differing covariate groups. The fact that the

effect seems to decrease linearly (to an approximation) however, also provides evidence that there is

responsiveness to price, which would suggest a complementary moral hazard effect. Flood-prone areas

have simply become too expensive for existing risk levels of property buyers.

A similar story exists in Florida, although there is continued evidence of the largest premium decreases

driving increases in development. This confirms my prior speculation that functional form issues in Figure

6 result in no visual effect in the decrease series. Clearly, it is only the largest premium decreases that

are driving this effect. In regard to increases, there is less of a linear relationship present, but larger

increases in premiums are still driving the negative development results. Furthermore, there is some

suggestive evidence that low levels of premium increases (around 40%, much like North Carolina) have

some effectiveness in reducing development. While there was no evidence of this type of risk signaling in

the other heterogeneity results, this could be suggestive of some risk communication occurring through

the new premium prices. However, taken together, Florida still seems to be driven by a moral hazard

story. The fact that I see responsiveness to premium changes at only considerably large levels (on both

sides of the distribution) strongly suggests that the price changes have priced out prospective property

buyers that are aware of the underlying risk but are not willing to pay the price.

Now, I follow the methods proposed in Callaway et al. (2024a,b), which allow me to construct the

entire distribution of average treatment effects on the treated (ATTs) with respect to the whole premium

change distribution. The flexible and non-parametric form of this method is preferred, as I do not have

to make arbitrary functional form decisions when choosing how to bin and discretize treatment as above.

In short, this method involves calculating the ATTs manually using sample means and regressinng
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the changes in my outcome on a flexible functional form of my treatment Di. In practice, I use a cubic

spline with internal knots at the 25th, 50th and 75th percentiles of Di. The resulting estimates from

that regression can then be used to construct estimators of the ATT for each level of treatment in Di.

As a result, I can construct an entire function of ATTs over the premium distribution as displayed in

Figure 9.

These figures tell a very similar story to the discrete version, but the flexible nature of the estimates

allow me to not only compare the two states in an easier way, but understand how the treatment evolves

smoothly with every level of premium change, not just the arbitrary bins which could also be hiding

important heterogeneity. In North Carolina, significant effects start at lower levels of premium change

increases (roughly 30%), confirming prior speculation that there is much more scope for information

signaling of risk through the new prices as opposed to only a pure moral hazard effect. However, the fact

that the ATTs decrease almost linearly with premium increases also suggests responsiveness to prices.

Though I cannot disentangle the information signal from the price effect, the responsiveness at low and

high levels of premium increases implies strong evidence of both effects.

In Florida, the continuous function shows a similar shape, but exhibits much more noise and a much

flatter profile as premium changes increase. Significant negative effects on development only start around

the 70-75% range, strongly suggesting that this is much less about signaling risk than it is about the

higher prices. Furthermore, this fact is bolstered by the relative flatness of the curve as premium changes

increase. If developers are relatively uniform in their response to premium changes above a certain level,

they are likely responding to demand decreases fueled by moral hazard responses, as prospective property

buyers are now unwilling to locate in areas that have increased their price of risk at a relatively uniform

rate above 70%. Again, this interpretation coincides with the history of flooding and disasters in Florida

and their familiarity with the NFIP overall compared to North Carolina. Plus, additional heterogeneity

analysis displayed in Appendix Figure A.14, confirm prior results that negative development effects are

being driven by the floodplain and low primary residence areas. Similar to the main ATT function for

Florida in Figure 9, the relative flatness of the low primary residence ATT curve strongly implies evidence

of moral hazard as imposed to risk signaling. For every premium change level above 100%, there seems

to be a uniform negative response in development, which I take as evidence of developers responding

to uniform decreases in demand. Together, these results suggest a demand response fueled by people’s

unwillingness to buy secondary residences in flood-risk areas, a much clearer example of moral hazard

than the North Carolina case.

Finally, I follow Callaway et al. (2024a) to calculate average causal responses (ACR) for each premium

change level in the distribution. ACRs are defined as the derivative of the ATT with respect to the

premium change level, which allows me to understand how the average area will respond to marginal

premium changes at each level of the distribution. Following their methods, I average these ACRs over

the entire distribution of the treated units (di = 1) to calculate a summary parameter for the reform. This

summary parameter will represent the average causal response across the entire premium distribution.

In words, this is the average change in new development in response to marginal changes in the premium

change. If I scale this parameter by the control mean of new development, I can then recover an elasticity

estimate comparable to the results in Section 6, without the weighting issues pointed out in Callaway

et al. (2024a). I estimate an elasticity of new development with respect to flood insurance premiums of

-0.24 for North Carolina, and -0.08 for Florida. Both of these estimates are close in magnitude to the
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elasticities estimated in Section 6 and reflect the inflated coefficients that I found in Table 3 compared to

the binary results in Table 2.34 Despite this attenuation, these are still economically meaningful results

as a 10% increase in flood insurance premiums leads to a -2.4% and -0.8% decrease in new development

in North Carolina and Florida, respectively. This provides further evidence of the important differences

in information mechanisms between the two states.

8 Robustness

Tables 5 and 6 report robustness results from a variety of additional checks and alternate specifications.

As stated prior, I trade-off parsimonious comparability between states with more accurate state-specific

models to better argue for external validity. In most cases, robustness results can be strengthened by

adding alternative controls that would better represent the state-specific setting. All robustness checks

are completed using the specification in Equation 9.

My first robustness check investigates the concern that weather events over the sample period could

be biasing results, as places with increased premiums are also places that will experience more extreme

weather events. To account for this, I draw on a many rich sources of data to construct time-varying

indicators that measure average annual rainfall, yearly exposure to hurricane-force winds, and average

distance to flooding and stream-flow measures. Column 1 in both robustness tables shows my results are

robust to these weather events.

In addition to the time-varying weather covariates, one also might be concerned that my results are

driven by differences in income and house values, as places with increased premiums are also places of

high wealth measures due to the structures being located in prime locations. Column 2 in both tables

includes indicators for household income, house values and starting development share interacted with

year-floodplain fixed effects (FE) to account for such differences in baseline wealth and development.

Furthermore, I include indicators for being with 400 meters of a water source, being a coastal county

and in a place with high storm surge risk (also interacted with the year-floodplain FE). Column 2 shows

my results survive, although the effect in Florida is slightly smaller in magnitude.

Next, one might be concerned that my premium calculations are biased due to the assignment of pre-

period coverage amounts and building replacement cost values from the NFIP policy data. In column

3, I can use an alternate treatment measure that calculates the premium changes based on geographic

features alone, assuming the same fixed values for insurance coverage and building replacement cost

values. Column 3 shows my results are robust to this alternate treatment measure.

One might be further concerned that my results may be spuriously picking up underlying differential

trends by block group-floodplains with different premium change levels. I add a linear trend (di · t) to

each specification to test this assumption in column 4. The results in Florida are robust to this trend, but

less so in North Carolina. However, this is explicitly due to the timing of the effects in North Carolina, as

the first two years in the post-period are relatively small and noisy compared to the very large significant

drop in 2023. Despite this fact and the larger standard errors, the coefficient in column 4 is still negative

and of an economically meaningful magnitude (6% decrease relative to the control mean).

A related concern to the linear trend above is one of mean reversion. If places with significant changes

in their premiums are adjusting back to some equilibrium level, this could be picked up by my post-period
34The prior elasticities were -0.32 for North Carolina and -0.11 for Florida.
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treatment interaction. Column 5 investigates this potential issue by interacting the 2019 value of my

main outcome (share of new development) for each observation with a full set of year dummies. This

will flexibly control for any mean-reverting dynamics and potential differential trends that rely on block

group-floodplain baseline characteristics. Both states’ coefficients are robust to this exercise.

Next, those with knowledge of the NFIP might be concerned that I did not incorporate Community

Rating System (CRS) discounts into the calculation of my hypothetical premiums, and my estimates

are simply picking up artificially inflated premium differences. Column 6 applies CRS discounts to my

premium measures and re-constructs the treatment variable. Both states are robust to this alternate

treatment measure.

Building on the CRS discount concern, one might also be worried about savvy NFIP communities

who will attempt to either increase their communities’ CRS discount or update their flood maps around

the timing of RR2’s implementation to alleviate premium increases for their residents. Column 7 includes

time-varying indicators for both CRS and flood map updates in each block group-floodplain to account

for any changes over the sample period. Once again, results in both states are robust. Column 8 combines

both the CRS discount treatment with the time-varying measures of CRS and flood map updates. The

results remain robust.

Column 9 addresses the concern of the updating of vacant parcels over the sample period by fixing

the denominator of my main outcome measure with the fixed baseline level of vacant parcels. Results

in Florida survive with attenuation and significance, but results in North Carolina are attenuated and

on the edge of significance. However, both coefficients are the correct sign and remain economically

meaningful. I stress that without any additional controls for parcel counts or available land, this is likely

far too strong a test. I find it encouraging that my results survive despite this fact.

Finally, column 10 addresses concerns with the definition of my control group. Instead of using the

median values of treatment as defined by floodplain status, I arbitrarily set the control group bounds

to be + − 0.30. Both states’ results are robust to this alternative treatment definition, and Florida’s

coefficient is even larger compared to baseline. North Carolina’s coefficient is a bit smaller in magnitude

compared to baseline, but still significant and meaningfully large.

I view the grand sum of all of these tests to be a powerful confirmation of my main results, especially

when considering the parsimonious specification underpinning these regressions. The fact that both

states can essentially survive the same 10 robustness checks provides a strong signal that my estimates

are both valid and externally valid.

9 Conclusion

Flooding in the United States is a problem that is not going away. The increased flood risk as a result of

climate change stresses the importance of correct risk pricing to ensure agents can make informed and safe

decisions about where to locate. This paper exploits a significant update in the price of flood risk within

the NFIP to identify the causal effects of risk price updates on new development decisions. My results

imply that distorted risk prices may lead to concerning moral hazard behaviors, confirming many of the

critiques underpinning the NFIP. However, the results in North Carolina also show evidence of successful

risk communication through price changes, providing strong support for the NFIP’s interpretation of

the benefits of RR2. Furthermore, the asymmetry in responses across the premium change distribution
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highlights a unique feature of this market and stresses unique policy considerations.

The negative development effects that I find in response to RR2 show that while there are benefits

to correcting the price of risk in terms of safety and destruction, there could be a significant trade-

off with the economic well-being of local communities. The asymmetry of my estimates suggests that

there could be serious downturns in development that could be having economic impacts on areas with

premium changes that I have not explored, which I emphasize is an important area of future research.

Furthermore, the political economy decisions underpinning the interplay between local developers, local

government leaders and community advocates is certainly an important aspect that can influence how

risk price updates are distributed in practice. These relationships should certainly be studied to better

understand the effects of flood insurance pricing reform.

Overall, my work highlights the potential benefits and limitations of using price instruments for

climate adaptation policy. As more of the United States experiences floods, accurate risk pricing is a

crucial first step in informing and protecting the public from the effects of climate change.
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10 Figure List

Figure 1: North Carolina Treatment Map

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood zones.
Darker red and orange areas represent intersections with flood zones. Change in premium is the dollar difference between
the calculated hypothetical single-family home premium under Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are
measured in 2023 dollars.
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Figure 2: Florida Treatment Map

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood zones.
Darker red and orange areas represent intersections with flood zones. Change in premium is the dollar difference between
the calculated hypothetical single-family home premium under Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are
measured in 2023 dollars.

30



Figure 3: Premium Change Distributions
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Notes: Change in premium is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are measured in 2023 dollars.
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Figure 4: Premium Change Distributions by Floodplain Status
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Notes: Change in premium is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are measured in 2023 real dollars. Floodplain status is determined
by area overlap with the National Flood Hazard Layer (NFHL), which outlines the boundaries for Special Flood Hazard
Areas (SFHAs).
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Figure 5: Event Studies of Main Results
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Notes: These figures present the coefficients on the years relative to the year prior to Risk Rating 2.0’s implementation
(2021), from Equation 8. New Development (%) is the share of newly developed parcels in a block group-floodplain in a
year. Joint F-tests of coefficient nullity are unable to be rejected for both states. The p-values for these tests can be found
in Table 2. Standard errors are clustered at the block group level.
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Figure 6: Event Studies - Increase and Decrease Treatments
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Notes: These figures present the coefficients on the years relative to the year prior to Risk Rating 2.0’s implementation
(2021), from Equation 8, replacing the binary treatment with the discrete treatment in Equation 7. New Development (%)
is the share of newly developed parcels in a block group-floodplain in a year. Joint F-tests of coefficient nullity are unable
to be rejected for both series in North Carolina and the increase series in Florida. The p-values for these tests can be found
in Table 2. Standard errors are clustered at the block group level.
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Figure 7: Heterogeneity of Main Results
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Notes: These figures present coefficients from Equation 5, interacting treatment with bins for each covariate. Starting from
the top of each sub-figure, the covariates used in this analysis are as follows: 1) floodplain status, an indicator for whether
the unit is in the floodplain or not; 2) distance to flood zone, an indicator representing above or below median distance
of the average parcel centroid to the floodplain boundary; 3) median household income, an indicator representing above
or below median household income; 4) primary residence percentage, an indicator representing the above or below median
percentage of primary residences; 5) hurricane history, an indicator for experiencing any category 1-level hurricane force
winds prior to the sample start in 2016; and 6) NFIP policy prevalence, an indicator representing above and below median
counts of NFIP policies. The corresponding coefficients can be found in Tables A.1 and A.2. Standard errors are clustered
at the block group level.
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Figure 8: Heterogeneity Across the Premium Change Distribution (Discrete)
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Notes: These figures present the coefficients from Equation 5, modifying treatment by creating separate indicators with
bins defined by quantiles at various points in the premium change distribution. Increase bins are defined by the 0, 15th,
30th, 45th, 60th, 75th, 90th, and 100th percentiles (7 bins). Decrease bins are defined by the 0, 33rd, 66th, and 100th
percentiles (3 bins). The y-axis shows the coefficient estimate of each treatment bin, which is the average treatment effect on
the treated (ATT). The x-axis converts the quantile bins into their approximate percentage change equivalents. Standard
errors are clustered at the block group level.
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Figure 9: Heterogeneity Across the Premium Change Distribution (Continuous)
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Notes: These figures present the estimates proposed in Callaway et al. (2024a,b). Average treatment effects on the treated
(ATTs) are manually calculated for each unit i and regressed on a flexible functional form of the premium change, Di. The
estimated coefficients from that regression are then used to construct the plotted smooth function. Standard errors are
clustered at the block group level and calculated via the numerical delta method. The x-axis is truncated for comparability
across states. See Figure A.15 for the full distribution.
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11 Table List

Table 1: Summary Statistics

North Carolina Florida

(1) (2)

Statewide

Number of Parcels 824,589 1,079,267

Number of Block Group-Floodplains 4,562 10,321

Premium Change ($) 5 666

Premium Change (Log Diff) 0.114 0.425

New Development 250,332 231,698

Floodplain Block Groups 12 872

Nonfloodplain Block Groups 2,390 4,391

Split Block Groups 2,160 5,058

Block Group-Floodplain Averages

New Development Share 0.05 0.057

Parcels 181 105

Housing Units 752 856

Population 1,650 1,829

County Averages

Total Area (km2) 1,336,385 1,900,734

Floodplain Area 0.117 0.381

Nonfloodplain Area 0.883 0.619

Total NFIP Policies 1,032 9,173

Net NFIP Claims ($) 419,925 1,099,449

Hurricane History 0.298 0.398

Notes: This table displays summary statistics for both North Carolina and Florida.
The top panel displays sums of block group-floodplain level measures across each
state and averages of the premium change measures for each state in dollars and
log differences. Split block groups measures the number of block groups that have a
portion in the floodplain and outside the floodplain. The middle panel displays block
group-floodplain level averages for my main outcome (new development share),
the number of parcels and measures of population and housing unit counts from
the American Community Survey (ACS). The bottom panel presents county-level
averages of block group-floodplain units. The average number of NFIP policies is
measured as of 2015, while the average number of NFIP claim amounts is measured
as the average amount of all claims paid from 1978-2015. Hurricane history measures
the average number of block groups in a county that have ever experienced category
1-level hurricane-force winds.

38



Table 2: Main Results - Binary and Discrete Treatments

North Carolina Florida

(1) (2) (3) (4)

Premium Change X Post-Period -0.01488*** -0.00457***

(0.00386) (0.00171)

Increase X Post-Period -0.01970*** -0.00677***

(0.00500) (0.00194)

Decrease X Post-Period 0.00048 0.00601**

(0.00353) (0.00265)

Pretrends F Test 0.273 0.632 0.432 0.018

Dep. Var Means (Control) 0.055 0.055 0.047 0.047

N 36,496 36,496 82,568 82,568

R2 0.401 0.401 0.345 0.346

* p < .10, ** p < .05, *** p < .01

Notes: This table presents the coefficient estimates from Equation 5 in columns 1 and 3 and Equation 7 in columns
2 and 4. Pre-Trends F-Test reports p-values from a joint F-test of nullity between all included pre-period indicators
interacted with treatment. The dependent variable mean of the control group, units with no significant change in
premium, is reported as well as the sample size and R2 values for each regression. Standard errors are clustered
at the block group level.
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Table 3: Main Results - Discrete and Continuous Treatments

North Carolina Florida

(1) (2) (3) (4)

Big Premium Increase X Post-Period -0.02683*** -0.00758***

(0.00559) (0.00260)

Small Premium Increase X Post-Period -0.01247** -0.00597***

(0.00623) (0.00232)

Big Premium Decrease X Post-Period 0.00143 0.00989***

(0.00348) (0.00327)

Small Premium Decrease X Post-Period -0.00079 0.00216

(0.00462) (0.00340)

Continuous Premium Change X Post-Period -0.01784*** -0.00535***

(0.00407) (0.00128)

Pretrends F Test 0.22 0.182 0.001 0.359

Mean Treatment 0.114 0.114 0.425 0.425

Scaled Coefficient -0.002 -0.0023

Dep. Var Means (Control) 0.055 0.055 0.047 0.047

N 36,496 36,496 82,568 82,568

R2 0.401 0.4 0.346 0.346

* p < .10, ** p < .05, *** p < .01

Notes: This table presents the coefficient estimates from a modification of Equation 5 in columns 1 and 3 and Equation 3 in
columns 2 and 4. Pre-Trends F-Test reports p-values from a joint F-test of nullity between all included pre-period indicators
interacted with treatment. The mean treatment is the average of treatment Di for each sample. The scaled coefficent multiples
the estimates in columns 2 and 4 by the mean treatment in the row above. The dependent variable mean of the control group,
units with no significant change in premium, is reported as well as the sample size and R2 values for each regression. Standard
errors are clustered at the block group level.
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Table 4: Main Results - Florida Alternative Outcomes

Sales Price (Log) Number Residential Units Total Living Area

(1) (2) (3)

Premium Increase X Post-Period -0.13711*** 0.50414*** 788.08295***

(0.03480) (0.18193) (232.18464)

Premium Decrease X Post-Period 0.10819 -0.23371 -164.78847

(0.07424) (0.16681) (187.01172)

Dep. Var Means (Control) 11.094 1.693 2,992

Dep. Var Means (Control - No Logs) 400,870

N 73,357 82,568 82,568

R2 0.426 0.689 0.644

* p < .10, ** p < .05, *** p < .01

Notes: This table presents the coefficients from Equation 7. Results are presented for Florida only, as North Carolina does not
report these outcomes. Column 1 shows the effect of RR2 on the average log sales price in a block group-floodplain. Column 2
shows the effect of RR2 on the average number of residential units. Column 3 shows the effect of RR2 on the average total living
area (in square feet). The dependent variable mean of the control group, units with no significant change in premium, is reported
as well as the sample size and R2 values for each regression. Additionally, column 1 reports the non-log measure of the average sales
price, which is measured in 2023 dollars. Standard errors are clustered at the block group level.
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Table 5: Robustness Table - North Carolina

Weather Weather+Parcel Char. Fixed Premium Linear Trend Mean Reversion

(1) (2) (3) (4) (5)

Premium Change X Post-Period -0.01182*** -0.01573*** -0.01806*** -0.00322 -0.01036***

(0.00394) (0.00410) (0.00394) (0.00343) (0.00389)

Pretrends F Test 0.249 0.383 0.009 0.356

Dep. Var Means (Control) 0.055 0.055 0.055 0.055 0.055

N 36,496 36,440 36,496 36,496 36,496

R2 0.401 0.423 0.402 0.401 0.439

CRS Premium CRS + Map Updates CRS Prem + Updates Alt. New Dev Alt. Treat

(6) (7) (8) (9) (10)

Premium Change X Post-Period -0.01172*** -0.01087*** -0.01087*** -0.00270 -0.00940**

(0.00394) (0.00384) (0.00384) (0.00175) (0.00418)

Pretrends F Test 0.273 0.31 0.31 0.619 0.03

Dep. Var Means (Control) 0.055 0.055 0.055 0.031 0.055

N 36,496 36,496 36,496 36,496 36,496

R2 0.4 0.408 0.408 0.261 0.4

* p < .10, ** p < .05, *** p < .01

Notes: This table presents the coefficients from modified versions of Equation 5. Column 1 uses the treatment variable from Equation 5 and adds time-varying covariates
to account for annual rainfall, yearly exposure to hurricane-force winds, and the average distance to flooding and stream-flow measures. Column 2 includes the additions
of column 1 and adds indicators for household income, house values, 2015 development share, storm surge risk, coastal county indicators, and being within 400 meters
of a water source, all interacted with year-floodplain fixed effects. In column 3, I replace the treatment measure with an alternate based on geographic features alone,
assuming the same fixed values for insurance coverage and building replacement cost values. Column 4 adds a linear trend interacted with original treatment. Column
5 adds indicators for each year interacted with the 2019 value of new development share. Column 6 changes the treatment variable by including Community Rating
System (CRS) discounts in the premium calculations. Column 7 includes time-varying indicators for both the CRS and flood map updates. Column 8 combines the
additions in columns 6 and 7. Column 9 changes the outcome variable by fixing the denominator over time. Column 10 uses an alternate treatment determined by a
fixed median value of Di of 0.30. See Section 8 for more details. Standard errors are clustered at the block group level.
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Table 6: Robustness Table - Florida

Weather Weather+Parcel Char. Fixed Premium Linear Trend Mean Reversion

(1) (2) (3) (4) (5)

Premium Change X Post-Period -0.00639*** -0.00369* -0.00446** -0.00664** -0.00420**

(0.00205) (0.00220) (0.00206) (0.00263) (0.00199)

Pretrends F Test 0.447 0.272 0.114 0

Dep. Var Means (Control) 0.047 0.047 0.047 0.047 0.047

N 82,568 80,784 82,568 82,568 82,568

R2 0.345 0.357 0.345 0.345 0.4

CRS Premium CRS + Map Updates CRS Prem + Updates Alt. New Dev Alt. Treat

(6) (7) (8) (9) (10)

Premium Change X Post-Period -0.00650*** -0.00611*** -0.00611*** -0.00203* -0.00614***

(0.00206) (0.00204) (0.00204) (0.00113) (0.00204)

Pretrends F Test 0.432 0.475 0.475 0.498 0.231

Dep. Var Means (Control) 0.047 0.047 0.047 0.032 0.047

N 82,568 82,568 82,568 82,568 82,568

R2 0.345 0.346 0.346 0.107 0.345

* p < .10, ** p < .05, *** p < .01

Notes: This table presents the coefficients from modified versions of Equation 5. Column 1 uses the treatment variable from Equation 5 and adds time-varying covariates
to account for annual rainfall, yearly exposure to hurricane-force winds, and the average distance to flooding and stream-flow measures. Column 2 includes the additions
of column 1 and adds indicators for household income, house values, 2015 development share, storm surge risk, coastal county indicators, and being within 400 meters
of a water source, all interacted with year-floodplain fixed effects. In column 3, I replace the treatment measure with an alternate based on geographic features alone,
assuming the same fixed values for insurance coverage and building replacement cost values. Column 4 adds a linear trend interacted with original treatment. Column
5 adds indicators for each year interacted with the 2019 value of new development share. Column 6 changes the treatment variable by including Community Rating
System (CRS) discounts in the premium calculations. Column 7 includes time-varying indicators for both the CRS and flood map updates. Column 8 combines the
additions in columns 6 and 7. Column 9 changes the outcome variable by fixing the denominator over time. Column 10 uses an alternate treatment determined by a
fixed median value of Di of 0.30. See Section 8 for more details. Standard errors are clustered at the block group level.
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A Appendix Tables and Figures

Figure A.1: Risk Rating 1.0 Rate Table Example

Notes: This is an example of a rate table used by insurance agents under the prior pricing scheme, Risk Rating 1.0. The
table can be found on page J-7 of the April 2021 NFIP Flood Insurance Manual.
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Figure A.2: FIRM Panel Example (Brown University Area)

Notes: This is an example of a Flood Insurance Rate Map (FIRM) using Brown University as the input location. The
FIRM shows flooding sources, flooding levels and flood zone designations. These maps were used to determine rates under
RR1 and used to determine mandatory purchase requirements for properties located in a flood zone for RR1 and RR2.
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Figure A.3: North Carolina Treatment Map - Increases

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Increase in premium is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are measured in 2023 real dollars.
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Figure A.4: North Carolina Treatment Map - Decreases

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Decrease in premium is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are measured in 2023 real dollars.
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Figure A.5: North Carolina Treatment Map - New Development

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Change in new development is the percentage point (pp) difference between the share of new development at the
block group-floodplain level in the post period (2021-2023) compared to the pre-period (2016-2020).
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Figure A.6: North Carolina Treatment Map - New Development vs. Premium Changes

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Premium change is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Development change is the percentage point (pp) difference between the
share of new development at the block group-floodplain level in the post period (2021-2023) compared to the pre-period
(2016-2020). The regression coefficient is the result of regressing development change on premium change, controlling for a
floodplain fixed effect to account for regulatory differences between the floodplain and non-floodplain areas. This coefficient
can be interpreted as follows: a 1pp increase in premium change results in a -.00043pp decrease in development change.
Dollars are measured in 2023 real dollars.
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Figure A.7: Florida Treatment Map - Increases

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Increase in premium is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are measured in 2023 real dollars.
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Figure A.8: Florida Treatment Map - Decreases

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Decrease in premium is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Dollars are measured in 2023 real dollars.
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Figure A.9: Florida Treatment Map - New Development

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Change in new development is the percentage point (pp) difference between the share of new development at the
block group-floodplain level in the post period (2021-2023) compared to the pre-period (2016-2020).

52



Figure A.10: Florida Treatment Map - New Development vs. Premium Changes

Notes: Each cell on the map is a block group-floodplain unit. Grey areas represent missing data. Blue areas are flood
zones. Premium change is the dollar difference between the calculated hypothetical single-family home premium under
Risk Rating 2.0 compared to Risk Rating 1.0. Development change is the percentage point (pp) difference between the
share of new development at the block group-floodplain level in the post period (2021-2023) compared to the pre-period
(2016-2020). The regression coefficient is the result of regressing development change on premium change, controlling for a
floodplain fixed effect to account for regulatory differences between the floodplain and non-floodplain areas. This coefficient
can be interpreted as follows: a 1pp increase in premium change results in a -.00016pp decrease in development change.
Dollars are measured in 2023 real dollars.
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Figure A.11: Housing Trends by State
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Notes: This figure plots the trend of the number of housing units in both North Carolina and Florida, split by floodplain
status. The percentages on each bar represent the percent of total housing units by floodplain status. This data comes
from the 5-year American Community Survey.
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Figure A.12: Event Studies - Florida Outcomes
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Notes: These figures present the coefficients on the years relative to the year prior to Risk Rating 2.0’s implementation
(2021), from Equation 8, replacing the binary treatment with the discrete treatment in Equation 7. The results are
presented for Florida only, as North Carolina does not report these outcomes. Table 4 reports the static version of these
figures, comparing the post-period to the pre-period. Subfigure (a) shows the effect of RR2 on the average log sales price
in a block group-floodplain. Subfigure (b) shows the effect of RR2 on the average number of residential units. Subfigure
(c) shows the effect of RR2 on the average total living area (in square feet). Standard errors are clustered at the block
group level.
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Figure A.13: North Carolina ATT Functions
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Notes: These figures present the estimates proposed in Callaway et al. (2024a,b), with splits by various covariate sub-groups.
Average treatment effects on the treated (ATTs) are manually calculated for each unit i within the covariate sub-sample
and regressed on a flexible functional form of the premium change, Di. The estimated coefficients from that regression are
then used to construct the plotted smooth functions. Standard errors are clustered at the block group level and calculated
via the numerical delta method. Subfigure (a) shows the continuous ATT function by floodplain status. Subfigure (b)
shows the continuous ATT function by varying distances to the flood zone boundary, among areas that are outside the
floodplain. Subfigure (c) shows the continuous ATT function by median household income bins. Subfigure (d) shows the
continuous ATT function by primary residence percentage bins.
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Figure A.14: Florida ATT Functions
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Notes: These figures present the estimates proposed in Callaway et al. (2024a,b), with splits by various covariate sub-groups.
Average treatment effects on the treated (ATTs) are manually calculated for each unit i within the covariate sub-sample
and regressed on a flexible functional form of the premium change, Di. The estimated coefficients from that regression are
then used to construct the plotted smooth functions. Standard errors are clustered at the block group level and calculated
via the numerical delta method. Subfigure (a) shows the continuous ATT function by floodplain status. Subfigure (b)
shows the continuous ATT function by varying distances to the flood zone boundary, among areas that are outside the
floodplain. Subfigure (c) shows the continuous ATT function by median household income bins. Subfigure (d) shows the
continuous ATT function by primary residence percentage bins.
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Figure A.15: Full Distributions of ATT Functions
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Notes: These figures present the estimates proposed in Callaway et al. (2024a,b). Average treatment effects on the treated
(ATTs) are manually calculated for each unit i and regressed on a flexible functional form of the premium change, Di. The
estimated coefficients from that regression are then used to construct the plotted smooth function. Standard errors are
clustered at the block group level and calculated via the numerical delta method.
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Table A.1: Heterogeneity Results - North Carolina

Outcome: New Development Percentage

Floodplain Dist. to FZ Med. Household Income Primary Res. %

(1) (2) (3) (4)

Premium Change X Post-Period -0.02018*** -0.00533 -0.00755 -0.00262

(0.00501) (0.00455) (0.00396) (0.00330)

Premium Change X Post-Period X Covariate 0.02216*** -0.01900** -0.02015** -0.03332***

(0.00562) (0.00768) (0.00782) (0.00779)

Pretrends F Test 0.273 0.262 0.198 0.136

Dep. Var Means (Control) 0.055 0.055 0.055 0.055

N 36,496 36,496 36,480 36,496

R2 0.401 0.401 0.407 0.41

Hurricane History NFIP Policies Mortgage % Med. House Value

(1) (2) (3) (4)

Premium Change X Post-Period -0.02401*** -0.02033*** -0.00946** -0.00851**

(0.00498) (0.00515) (0.00381) (0.00372)

Premium Change X Post-Period X Covariate 0.02146*** 0.01922** -0.01416 -0.02012**

(0.00572) (0.00789) (0.00771) (0.00783)

Pretrends F Test 0.185 0.538 0.194 0.132

Dep. Var Means (Control) 0.055 0.055 0.055 0.055

N 36,496 36,496 36,480 36,440

R2 0.405 0.407 0.406 0.409

* p < .10, ** p < .05, *** p < .01

Notes: This table presents coefficients from Equation 5, interacting treatment with bins for each covariate. Starting from the top left of the upper panel, the

covariates used in this analysis are as follows: 1) floodplain status, an indicator for whether the unit is in the floodplain or not; 2) distance to flood zone, an

indicator representing above or below median distance of the average parcel centroid to the floodplain boundary; 3) median household income, an indicator

representing above or below median household income; 4) primary residence percentage, an indicator representing the above or below median percentage of

primary residences; 5) hurricane history, an indicator for experiencing any category 1-level hurricane force winds prior to the sample start in 2016; 6) NFIP

policy prevalence, an indicator representing above and below median counts of NFIP policies; 7) mortgage percentage, an indicator representing above and

below median percentage of mortgages; and 8) median house values, an indicator representing above and below median house values. The corresponding

coefficients can be found in Figure 7. Standard errors are clustered at the block group level.
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Table A.2: Heterogeneity Results - Florida

Outcome: New Development Percentage

Floodplain Dist. to FZ Med. Household Income Primary Res. %

(1) (2) (3) (4)

Premium Change X Post-Period -0.00240 -0.00132 -0.00188 -0.00606***

(0.00216) (0.00262) (0.00190) (0.00223)

Premium Change X Post-Period X Covariate -0.00658 -0.00471 -0.00044 0.00266

(0.00356) (0.00352) (0.00344) (0.00344)

Pretrends F Test 0.432 0.362 0.181 0.446

Dep. Var Means (Control) 0.047 0.047 0.047 0.047

N 82,568 82,568 82,496 82,568

R2 0.345 0.346 0.349 0.346

Hurricane History NFIP Policies Mortgage % Med. House Value

(1) (2) (3) (4)

Premium Change X Post-Period -0.00281 -0.00015 -0.00535*** 0.00077

(0.00219) (0.00204) (0.00204) (0.00192)

Premium Change X Post-Period X Covariate -0.00518 -0.00092 0.00158 -0.00153

(0.00349) (0.00352) (0.00342) (0.00347)

Pretrends F Test 0.459 0.022 0.444 0.063

Dep. Var Means (Control) 0.047 0.047 0.047 0.047

N 82,568 82,568 82,520 82,336

R2 0.346 0.348 0.346 0.35

* p < .10, ** p < .05, *** p < .01

Notes: This table presents coefficients from Equation 5, interacting treatment with bins for each covariate. Starting from the top left of the upper panel, the

covariates used in this analysis are as follows: 1) floodplain status, an indicator for whether the unit is in the floodplain or not; 2) distance to flood zone, an

indicator representing above or below median distance of the average parcel centroid to the floodplain boundary; 3) median household income, an indicator

representing above or below median household income; 4) primary residence percentage, an indicator representing the above or below median percentage of

primary residences; 5) hurricane history, an indicator for experiencing any category 1-level hurricane force winds prior to the sample start in 2016; 6) NFIP

policy prevalence, an indicator representing above and below median counts of NFIP policies; 7) mortgage percentage, an indicator representing above and

below median percentage of mortgages; and 8) median house values, an indicator representing above and below median house values. The corresponding

coefficients can be found in Figure 7. Standard errors are clustered at the block group level.
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B Premium Calculations

B.a Risk Rating 1.0

Let each household’s (p) total insurance coverage amount for I ∈ (Build, Contents) be defined as:

Total_CoverageIp = Basic_CoverageIp +Add_CoverageIp (10)

where

Basic_CoverageBuild
p = min{60, 000, T otal_CoverageBuild

p },

Basic_CoverageContents
p = min{25, 000, T otal_CoverageContents

p }
(11)

For each household p, the total premium (before non-CRS discounts) is calculated:

Premiump = [(Basic_RateBuild
p ∗Basic_CoverageBuild

p +

Add_RateBuild
p ∗Add_CoverageBuild

p ) ∗Deductp +

(Basic_RateContents
p ∗Basic_CoverageContents

p +

Add_RateContents
p ∗Add_CoverageContents

p ) ∗Deductp] ∗ CRSp

(12)

where RateIp = f(FZp, EBp, HTp, PRp), or in other words, rates are dependent on the parcel’s flood

zone type (FZp), its elevation relative to the Base Flood Elevation (EBp) if FZp ∈ (A, V ), the household

type or contents location (HTp), and whether the house is being used as a primary residence (PRp).35

I take rates as given from the NFIP insurance manual in April of 2021. FEMA determines rates by

calculating the expected losses for groups of structures that are similar in flood risk (i.e. flood zone)

and structural aspects (BFE, foundation/basement Type, etc.) and assigns that same rate to all policies

in the group. This combines flood zones across many different geographic areas in the United States,

potentially confounding true flood risk due to local geographic factors. Furthermore, within a flood zone,

all households are charged the same rate, conditional on similar structure and policy characteristics (Horn

and Webel, 2024). FEMA only considered flood risk from coastal storm surge and river (fluvial) flooding

prior to Risk-Rating 2.0. This risk is expressed in expected economic loss due to inundation and the

probability of loss. Information about these risks and hazards comes from the NFIP Flood Insurance

Studies (FIS), the structure characteristics of insured properties and the performance of various flood-

protection measures such as levees. Flood risks are determined with statistical models of weather events

to compute various flooding depths and speeds, and how often they could occur. These models are then

used in flood risk assessments to produce an estimate of average annual loss for the program, which is

then used to determine insurance rates.36

35Zones A and V are Special Flood Hazard Zones (SFHAs), and Zone X is not (Non-SFHA).
36The rate is also adjusted for expenses, deductibles, under-insurance and other factors.
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B.b Risk Rating 2.0

Following the information in Milliman (2022), let each household’s (p) total insurance coverage amount

for I ∈ (Build, Contents) be defined as: CoverageIp. Let j ∈ J be a risk peril, where J is a set of risk

perils that includes inland flood, storm surge, tsunami, Great Lakes and coastal erosion. Let g ∈ Gj be a

geographic factor, where Gj is a j-specific peril set that contains insurance weight factors for base rates,

the distance to a river, elevation relative to a river, the drainage area, structural relative elevation, the

distance to the coast, the distance to the ocean, elevation, the distance to the Great Lakes, elevation

relative to the Great Lakes, and HUC12 territory.37

Let s ∈ Sj be a structural factor. Sj is a j-specific peril set of insurance weight factors for the structure

use type, floors of interest, the foundation type, first floor height, machinery and equipment above first

floor, the coverage value factor, the final deductible and insurance-to-value (ITV), the concentration risk,

and the CRS discount. The premium calculation is as follows:

Premiump =

J∑
j=1

(
G∏

g=1

βg,p ·
S∏

s=1

δs,p

)Build

j

∗ CoverageBuild
p +

J∑
j=1

(
G∏

g=1

βg,p ·
S∏

s=1

δs,p

)Contents

j

∗ CoverageContents
p

(13)

Each weighting factor in Gj and Sj is the result of loss estimates of multiple catastrophe models under the

new rating system. This process includes three core components. First, FEMA creates market-baskets

representative of single-family homes with similar risk factors using geographic data from a variety

of sources including the USGS, NOAA and the U.S. Army Corps of Engineers. Next, FEMA develops

NFIP’s aggregate target premium using the average annual losses (AALs) generated from the catastrophe

models. Finally, FEMA uses this aggregate target premium to determine individual household premiums

based on the risk factors of their individual properties and the potential flood sources specific to their

structure. FEMA uses rating factors that are shown to be correlated with the likelihood of losses,

comparing AAL from the catastrophe models to NFIP’s historical losses to adjust accordingly (Horn,

2022).

37Base rates are specific to state and residential status of the structure.
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